1,086 research outputs found

    Addressing Imperfect Symmetry: a Novel Symmetry-Learning Actor-Critic Extension

    Full text link
    Symmetry, a fundamental concept to understand our environment, often oversimplifies reality from a mathematical perspective. Humans are a prime example, deviating from perfect symmetry in terms of appearance and cognitive biases (e.g. having a dominant hand). Nevertheless, our brain can easily overcome these imperfections and efficiently adapt to symmetrical tasks. The driving motivation behind this work lies in capturing this ability through reinforcement learning. To this end, we introduce Adaptive Symmetry Learning (ASL) \unicode{x2013} a model-minimization actor-critic extension that addresses incomplete or inexact symmetry descriptions by adapting itself during the learning process. ASL consists of a symmetry fitting component and a modular loss function that enforces a common symmetric relation across all states while adapting to the learned policy. The performance of ASL is compared to existing symmetry-enhanced methods in a case study involving a four-legged ant model for multidirectional locomotion tasks. The results demonstrate that ASL is capable of recovering from large perturbations and generalizing knowledge to hidden symmetric states. It achieves comparable or better performance than alternative methods in most scenarios, making it a valuable approach for leveraging model symmetry while compensating for inherent perturbations

    Adapted control methods for cerebral palsy users of an intelligent wheelchair

    Get PDF
    The development of an intelligent wheelchair (IW) platform that may be easily adapted to any commercial electric powered wheelchair and aid any person with special mobility needs is the main objective of this project. To be able to achieve this main objective, three distinct control methods were implemented in the IW: manual, shared and automatic. Several algorithms were developed for each of these control methods. This paper presents three of the most significant of those algorithms with emphasis on the shared control method. Experiments were performed by users suffering from cerebral palsy, using a realistic simulator, in order to validate the approach. The experiments revealed the importance of using shared (aided) controls for users with severe disabilities. The patients still felt having complete control over the wheelchair movement when using a shared control at a 50% level and thus this control type was very well accepted. Thus it may be used in intelligent wheelchairs since it is able to correct the direction in case of involuntary movements of the user but still gives him a sense of complete control over the IW movement

    A Methodology for Creating an Adapted Command Language for Driving an Intelligent Wheelchair

    Get PDF
    Intelligent wheelchairs (IW) are technologies that can increase the autonomy and independence of elderly people and patients suffering from some kind of disability. Nowadays the intelligent wheelchairs and the human-machine studies are very active research areas. This paper presents a methodology and a Data Analysis System (DAS) that provides an adapted command language to an user of the IW. This command language is a set of input sequences that can be created using inputs from an input device or a combination of the inputs available in a multimodal interface. The results show that there are statistical evidences to affirm that the mean of the evaluation of the DAS generated command language is higher than the mean of the evaluation of the command language recommended by the health specialist (p value = 0.002) with a sample of 11 cerebral palsy users. This work demonstrates that it is possible to adapt an intelligent wheelchair interface to the user even when the users present heterogeneous and severe physical constraints
    corecore